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A Laplacian Characterization

A.1 Generic term of the Laplacian matrix

Let ∆ be the Laplacian of an hypergraph H = (N,E).
We write ∆ = GTG where G is the matrix of the unnormalized gradient

for some ordering of the nodes v1, . . . , v|N | and some ordering of the hyperedges
h1, . . . , h|E|. We have:

Gi,j = ǫhi
(vj)

√

whi
(vj)

where:

ǫh(v) =







1 if v ∈ th

− 1 if v ∈ sh

0 otherwise

We get directly the generic term of the Laplacian matrix:

∆i,j =
∑

k

Gk,iGk,j =
∑

k

Phk
(vi, vj)

√

whk
(vi)

√

whk
(vj)

A.2 Proof of theorem 1

We are going to proove here the theorem 1 which states that a matrix M is the
Laplacian of an hypergraph if and only if it is symmetric semi-definite positive
and 1 ∈ Ker(M).

Proof.

⇐
If M ∈ Mn(R) is symmetric semi-definite positive, we can write M = GTG

where G is a square root of M . We have 1 ∈ Ker(M) so:

1TM1 = 0

(G1)T (G1) = 0

‖G1‖2 = 0

and 1 ∈ Ker(G).
We define an hypergraph H on n edges N = {v1, . . . , vn} using the following
rule: for the i-th line of G, we create the hyperedge hi where for all vj ∈ N ,
whi

(vj) = |Gi,j |
2. The nodes with positive weights will be assigned to one end

and those with negative weights to the other end.
The weight equilibrium property holds for all these hyperedges because the

lines of G have a null sum (1 ∈ Ker(G)). We can easily verify that G is a
gradient matrix for H. The transposition of this matrix gives a matrix of −div

(hermitian adjoint) so we can write the unnormalized Laplacian:
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∆ = M(grad)TM(grad) = M

,
which concludes the proof.

⇒
Let ∆ be the Laplacian of an hypergraph H = (N,E). ∆ is symmetric and the
sum of its i-th line can be written as:

Si =
∑

j

∑

k

ǫhk
(vi)ǫhk

(vj)
√

whk
(vi)

√

whk
(vj)

=
∑

k

ǫhk
(vi)

√

whk
(vi)

∑

j

ǫhk
(vj)

√

whk
(vj)

︸ ︷︷ ︸

=0 (weight equilibrium in hk)

= 0

So ∆ is sms0. Let’s now consider the gradient matrix G. As above, we have
∆ = GTG. The singular value decomposition of this matrix gives:

G = UΣV T

∆ = V Σ2V T has a positive spectrum and is semi-definite positive, which con-
cludes the proof.

B Interpretation of Laplacian Distances

We are going to give in this section some important proofs that allow us to
interpret the resistance distances linked to the Laplacian matrices. The following
results are valid as soon as Ker(∆) = Span(1) (rank(∆) = |N | − 1), i.e. when
the related hypergraph is connected.

Consider the hypergraph as an equivalent electrical network. The Poisson’s
law for the electric potential V in the static case is ∆V = −ρ

ǫ0
where ρ is the

charge density. This law can be used in our discrete analysis framework if we
consider V as a real-valued node function. Let us define the input function of
our network as the real-valued function i = − ρ

ǫ0
. We have then the following

fundamental relation :

∆V = i

We are going to consider for some node b ∈ N the following electrical flow
denoted by ib :

i(u) =







d(u) if u 6= b

−
∑

v 6=b

d(v) = −(vol(G)− d(b)) if u = b



5

We denote by V b the electrical potentials resulting from ib. The difference of
potential V b

v − V b
u will be denoted by V b

uv.
We show in the next parts the following results:

1. (Appendix B.1) The electrical potentials are linked to the hypergraph Lapla-
cian through the following relation for any a and b:

V a
ab + V b

ba = vol(H)(∆†
a,a +∆

†
b,b − 2 ·∆†

a,b) = vol(H)Ωa,b

2. (Appendix B.2) The electrical potentials satisfy the following linear system
for any a and b:

V b
ba =

∑

h∋a

wh(a)

d(a)



1 +
∑

n∈h,n6=a

ǫh(n)ǫh(a)

√

wh(n)

wh(a)
V b
bn



 .

with V b
bb = 0

B.1 Link between V a

ab
+ V b

ba
and the Laplacian kernel ∆†

We are going to consider for some node b ∈ N the following electrical flow in the
network ([6]):

i(u) =







d(u) if u 6= b

−
∑

v 6=b

d(v) = −(vol(G)− d(b)) if u = b

The corresponding electric potentials are denoted by V b. Since the hyper-

graph is connected we have Ker(∆) = Span(1) so R
|N | = Span(1)

⊥
⊕Ker(∆)⊥.

We look for the solution of ∆V = i with V = µ1 + x where x ∈ Ker(∆)⊥.
Let’s consider the operator Q = ∆†∆. Q is the orthogonal projector operator
on Ker(∆)⊥ (general property of the pseudo-inverse). Since x ∈ Ker(∆)⊥, we
have :

x = Qx

= ∆†∆x

= ∆†
i

Since x satisfies ∆x = I. Finally, we have V = ∆†I + µ1. V is defined up
to an additive constant. We are going to consider difference of potentials in the
following. We have then:

V b
ba = V b

a − V b
b = (ea − eb)

T∆†
i

=
∑

u6=b

d(u) · (∆†
u,a −∆

†
u,b)− (vol(G)− d(b)) · (∆†

a,b −∆
†
b,b)

=
∑

u6=b,a

d(u) · (∆†
u,a −∆

†
u,b) + d(a) · (∆†

a,a −∆
†
a,b) + (vol(G)− d(b)) · (∆†

b,b −∆
†
a,b)
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By inverting a and b we get conversely:

V a
ab =

∑

u6=b,a

d(u)·(∆†
u,b−∆†

u,a)+d(b)·(∆†
b,b−∆

†
b,a)+(vol(G)−d(a))·(∆†

a,a−∆
†
a,b)

and finally:

V a
ab + V b

ba = vol(G) · (∆†
a,a +∆

†
b,b − 2 ·∆†

a,b)

+
∑

u6=b,a

d(u) · (∆†
u,a −∆

†
u,b +∆

†
u,b −∆†

u,a
︸ ︷︷ ︸

=0

)

+(∆†
a,a −∆

†
a,b) · (d(a)− d(a))

︸ ︷︷ ︸

=0

+(∆†
b,b −∆

†
b,a) · (d(b) − d(b))

︸ ︷︷ ︸

=0

= vol(G)(∆†
a,a +∆

†
b,b − 2 ·∆†

a,b)

This proof is valid for any system of nodes (graph or hypergraph) embedded
with a Laplacian matrix ∆ (related to some gradient grad).

B.2 Specific case of an hypergraph embedded with an unnormalized

Laplacian

We start with the fundamental relations written for the node a:

eTa∆V b = d(a)

,
We have:

〈
ea, ∆V b

〉
=

〈
grad(ea), grad(V

b)
〉

=
〈
grad(ea), grad(V

b − V b
b )

〉

where V b
b is the constant function on the nodes giving the value of the elec-

trical potential in the node b. The unnormalized gradient of a constant function
is null because of the weight balance condition.

〈
grad(ea), grad(V

b − V b
b )

〉
=

∑

h∋a

√

wh(a)

{
∑

n∈h

(−Ph(n, a))
√

wh(n) · (V
b
n − V b

b )

}

=
∑

h∋a

√

wh(a)

{
∑

n∈h

(−Ph(n, a))
√

wh(n)V
b
bn

}

We get finally:
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d(a) =
∑

h∋a

√

wh(a)

{
∑

n∈h

(−Ph(n, a))
√

wh(n)V
b
bn

}

= V b
ba

∑

h\ a∈h

wh(a)(−Ph(a, a))

︸ ︷︷ ︸

=d(a)

+
∑

h∋a

√

wh(a)







∑

n∈h,n6=a

(−Ph(n, a))
√

wh(n)V
b
bn







We can rewrite the last equality as a linear system:

V b
ba = 1 +

∑

h∋a

√

wh(a)

d(a)







∑

n∈h,n6=a

Ph(n, a)
√

wh(n)V
b
bn







=
∑

h∋a

wh(a)

d(a)






1 +

∑

n∈h,n6=a

Ph(n, a)

√

wh(n)

wh(a)
V b
b,n







which concludes the proof.

B.3 Graph harmonics and behavior of laplacian distances

As stated in part 2, the distance defined by an unnormalized laplacian ∆ might
not be a proper distance. Indeed, this distance is symmetric and always satisfies
the triangle inequality but can have Ωi,j = 0 for i 6= j. Our goal in this part is
to give more information about this pathological case.

First, let’s write ∆ = V ΛV T where Λ is the diagonal matrix of the eigenval-
ues λ1 = 0 ≤ · · · ≤ λ|N | and V is an orthogonal matrix (which columns are the
eigenvectors of ∆). We have Ωi,j = 0 if and only if the distance is null in the
V-space between φ(i) and φ(j):

‖φ(i)− φ(j)‖2 =
∑

k

λ
†
k|Vi,k − Vj,k|

2 = 0

As a consequence, we have to satisfy the following condition:

Vi,k = Vj,k as soon as λk 6= 0 (∗)

In the following, we will assume without loss of generality that we have p null
eigenvalues λ1 = · · · = λp = 0.

When the hypergraph is connected we haveKer(∆) = Span(1) so Vi,1 = Vj,1.
Then, if (∗) is satisfied then the i-th and j-th lines of V are fully equals, which is
impossible since V is orthogonal. In this case the resistance distance is a proper

distance. It is the case for the classic connected graphs.
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When the rank of ∆ is lower, (∗) can be satisfied, which lead to the pathological
case Ωi,j = 0 with i 6= j. We know that x is in Ker(∆) if and only if, it defines
an harmonic function for the gradient G:

∆x = 0 ⇔ xT∆x = 0 ⇔ xTGTGx = 0 ⇔ ‖Gx‖2 = 0 ⇔ x ∈ Ker(G)

(the first equivalence is due to the fact that if xT∆x = 0 then x is a minimum
of the function t → tT∆t and the first order condition gives ∆t = 0).

Ideally, we should try to keep Ker(∆) as small as possible. In some cases, we
can put some hard constraint in order to have rank(∆) = |N | − 1 (for example
in the optimization problem proposed in section 4 ; this rank constraint can
be handled quite efficiently using manifold optimization). For the combination
methods described and experimented in this paper, having rank = |N | − 1 is
not guaranteed at the end. However, we are deliberately using post-processing
methods that does not create uselessly artificial harmonics (for example, we flip
the negative eigenvalues instead of replacing them by 0).

C Remarks concerning the ZHS algorithm

The purpose on this annex is to prove the validity of the algorithm ZHS when
it uses an unnormalized Laplacian.

The goal of the algorithm is to minimize J(f) = fT∆f + µ‖f − y‖. The

regularization term fT∆f =
∑

[u,v]∈E [grad(f)([u, v])]
2
controls the smoothness

of f on the graph. In [23], the authors use the normalized gradient and therefore
the normalized Laplacian (see section 5. of the paper). However, the algorithm
remains valid with other choices.

If we come back to the necessary condition used by [23]:

∆f + µ(f − y) = 0

⇔ (∆+ µI)f = µy

∆+ µI is invertible for any µ > 0 since det(∆ − λI) 6= 0 for any negative λ

(∆ is semi-definite positive). If we write ∆ = I − θ, we have:

∆+ µI = (1 + µ) · I − θ = (1 + µ) ·

(

I −
1

1 + µ
· θ

)

= (1 + µ) (I − αθ)

,
where α = 1

1+µ
. The matrix I − αθ is invertible for any µ > 0 (∆ + µI is

invertible and 1 + µ 6= 0 in this case). Since µ
1+µ

= 1− α, we finally get:

f = (1 − α)(I − αθ)−1y

This formula is analog to the one proposed in [23] (theorem 3.3) and is valid
for any Laplacian∆. We are going to apply this algorithm with our unnormalized
Laplacians.


